
6 OPTIMAL CONTROL

So far we were concerned with control design where the objective was either to stabilize a
system (the regulator problem), or to track a reference input (the servomechanism problem).
We can do better than this though! In particular, what if we wanted to design the “best”
controller, where the word “best” is understood with respect to some measure of merit or
performance index? In classical control design we have already seen the use of integral
performance criteria (such as ITAE) in order to obtain desirable characteristic equations for
use in pole placement. Other criteria could lead to minimizing the travel time (minimal time
control), fuel consumption (minimal fuel control), miss distance (optimal randevouz), and
so on. These requirements lead to the design of optimal controllers.

6.1 Optimal Control Problems

In general terms, the problem is to find a control law u for the system ẋ = f(x, u) such that
a certain index J is minimized. Therefore, the basic problem of optimal control is

minimize J = K(x0, xf) +
∫ tf

t0
L(x, u) dt ,

under the constraint
ẋ = f(x, u) .

K, L are specified functions, and

x0(t0) : initial state (time)
xf(tf) : final state (time)

}
given or free .

This formulation is general enough to allow for several interesting cases, for instance,

• K = 0, L = 1 =⇒ minimal time problem,

• K = 0, L = |u| =⇒ minimal fuel problem,

and so on.

Specifically, we have the following problem statement:

1. System equations ẋ = f(x, u, t) where x ∈ Rn is the state vector, and u ∈ Rm is the
controls vector.

2. Boundary conditions on the starting time, t0, initial state x0 = x(t0), final time tf ,
and final state xf = x(tf). These may or may not be given, therefore we can have a
number of combinations fixed–free, free–free, free–fixed problems.

1

3. Performance index

J = K(xf , tf) +
∫ tf

t0
L(x(t), u(t), t) dt .

A few special cases for this are:

• The Mayer problem,
J = K(xf , tf) .

• The Lagrange problem,

J =
∫ tf

t0
L(x(t), u(t), t) dt .

• The Bolza problem, both K and L are non–zero.

4. Constraints can be either on control; i.e., |ui| ≤ 1 (very common), or on the state; i.e.,
G(xf , tf) = 0 (target sets), |xi| ≤ Xi (inequality constraints, very hard to handle in
general). These constraints determine a set of admissible control histories, U , and a
set of admissible state trajectories, X.

The general problem of optimal control can then be stated as:

Find u(·) ∈ U which takes the system from x0 at t0 to xf at tf by ẋ = f(x, u, t)
in such a way at to minimize J while x(·) ∈ X.

6.2 Examples

Some examples of optimal control problems are:

1. Time Optimal Control:
Consider J =

∫ tf
t0 dt where t0 is fixed and tf is free. We can have fixed end points or

belonging on target sets. Usually, we also need constraints on u to make the problem
well–posed. As a particular example consider ẍ = u, where |u| ≤ 1. Say we start from
initial conditions x0, ẋ0 both positive and we want to get to the origin xf = ẋf = 0, as
quickly as possible. We can see that since we initially have positive x and positive ẋ
we must apply full negative control u = −1 in order to get negative ẋ (i.e., towards the
origin) while x remains positive. Then at some instant we should switch to full positive
control u = +1 to stop at x = 0 with zero speed. The precise instant of switching from
u = −1 to u = +1 is, of course, not known for now. This is an example of a bang–bang
control problem, which most time optimal control problems lead to.

2. Fuel Optimal Control:
A typical example is,

J =
∫ tf

t0

m∑
i=1

|ui| dt .

2

Typically, such problems lead to bang–bang controls and with tf free, the problem
may be ill posed for certain initial conditions — i.e., if no restrictions on tf are placed
minimum fuel could mean coast to the destination with very small speed.

3. Mimimum Integral Square Error:
Here,

J =
∫ tf

t0
xT x dt or J =

∫ tf

t0
xT Qxdt ,

where Q is a symmetric and positive definite matrix. Typically we need constraints
on u to prevent it from becoming infinitely large. In the special case of linear state
feedback, we get the familiar ISE criterion.

4. Mimimum Energy Problems:
Here,

J =
∫ tf

t0
uT Ru dt ,

where R is symmetric and positive definite.

5. Final Value Optimal Control:
Here, J = K(xf , tf), for example

J =
n∑

i=1

(xif − xi(tf))
2 .

Combinations of the above are, of course, also possible examples.

6.3 Calculus of Variations

A real function of a real variable is a map between a real number to another real number.
A map between a function to a real number is called a functional. The performance index
J is an example of a functional. Minimization of a functional is the subject of a branch of
mathematics, called calculus of variations. The simplest problem of the calculus of variations
is,

min J =
∫ tf

t0
L(x, ẋ, t) dt ,

where x is a scalar function, t0, x(t0), tf , x(tf) are given, and all functions are smooth. It
should be mentioned here that t in the above equation is not necessarily time (although in
control problems it most likely is); t simply denotes the dependent variable. The function x
then which minimizes J satisfies the so–called Euler–Lagrange equations,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 ,

together with the boundary conditions x(t0) = x0, x(tf) = xf .

The solutions to these equations are called the extremals. The equations are usually
referred to as Euler’s equations in calculus of variations textbooks and Lagrange’s equations

3

in dynamics, where L is called the Lagrangian and is the kinetic minus the potential energy
of a conservative system. Again in dynamics, the fact that the Lagrangian L is a stationary
value for J is called Hamilton’s principle.

The Euler–Lagrange (E–L) equations are in general 2nd order nonlinear differential equa-
tions, which means that we need two boundary conditions x(t0) = x0 and x(tf) = xf to solve
them. Existence, however, is not guaranteed here. This is not a Cauchy initial value prob-
lem, it is called a two–point boundary value problem (more later) and can be rather difficult
to solve numerically.

Some particular cases of E–L are:

1. Suppose that L(x, ẋ, t) is independent of x (this is called an ignorable coordinate in
dynamics). Then, E–L results in

d

dt

∂L

∂ẋ
= 0 =⇒ ∂L

∂ẋ
= const.

which is the principle of conservation of conjugate momentum in dynamics.

2. Suppose we have a time invariant system and L(x, ẋ, t) is independent of t. Then,

∂L

∂x
− d

dt

∂L

∂ẋ
=

∂L

∂x
− ∂2L

∂x∂ẋ
ẋ − ∂2L

∂ẋ2
ẍ = 0 ,

or

ẋ
∂L

∂x
− ∂2L

∂x∂ẋ
ẋ2 − ∂2L

∂ẋ2
ẍẋ =

d

dt

[
L − ẋ

∂L

∂ẋ

]
= 0 .

This of course means that

L − ẋ
∂L

∂ẋ
= const. ,

which is the conservation of Hamiltonian.

3. If L(x, ẋ, t) is independent of ẋ, then E–L becomes simply ∂L
∂x

= 0.

6.4 Example: The Brachystochrone Problem

The brachystochrone problem is one of the oldest problems that in fact initiated efforts
towards calculus of variations. It can be simply stated as follows: Given a point O in a
vertical plane with coordinates (t0, x0) and another point also in the same vertical plane
with coordinates (tf , xf) find the shape of a curve connecting the two points such that
a frictinless mass can start at O with zero speed and slide down in minimal time. The
geometry is shown in Figure 28. We should exercise caution here in that t is not time; x and
t are the two spatial coordinates of the problem.

To formulate the problem we use the kinetic energy mv2

2
and the potential energy −mgx.

Conservation of energy requires that mv2 − 2mgx = 0 from which v =
√

2gx. The elapsed

4

� �� � � ���	�	�
� �

�� � � �
� �

�

�

��

� ���������������

���

���� ������� ������ �� �� ������������ ������� ��� �� ���� ���

� �� ���� ��������

Figure 1: The brachystochrone problem

5

time is,

dτ =
ds

v
=

√
dx2 + dt2√

2gx
=

√
1 + ẋ2

√
2gx

dt .

The total elapsed time to minimize is then given by,

T =
∫

dτ =
1√
2g

∫ tf

t0=0

√
1 + ẋ2

x
dt .

Since the Lagrangian

L(x, ẋ, t) =

√
1 + ẋ2

x
,

is independent of t, the E–L equations become

L − ẋ
∂L

∂ẋ
= const. ⇒

√
1ẋ2

√
x

− ẋ2ẋ

2
√

x
√

1 + ẋ2
= C ⇒

1 + ẋ2 − ẋ2 = C
√

x(1 + ẋ2) ⇒ x(1 + ẋ2) = C1 ⇒

tx =

√
C1 − x

x
⇒ dt =

√
x

C1 − x
dx .

If we let
x = C1 sin2 θ ,

we get
dx = 2C1 sin θ cos θ dθ ,

and
dt = 2C1 sin2 θ dθ = C1(1 − cos 2θ) dθ .

Integrating,

t = C1

(
θ − sin 2θ

2

)
+ C2 .

Since x(θ = 0) = 0 and t(θ = 0) = 0 we get,

x =
C1

2
(1 − cos 2θ) ,

t =
C1

2
(2θ − sin 2θ) .

Geometrically, these equations represent (parametrically) an arc of a cycloid generated by
rotating a circle of radius C1/2 by an angle 2θ. The two constants C1 and θ can be determined
by enforcing the remaining two boundary conditions,

x(θf) = xf and t(θf) = tf .

Some comments on the brachystochrone are:

6

1. Every sub–arc of a brachystochrone with appropriate boundary velocities is by itself a
brachystochrone. With regards to Figure 28, if A–B is a brachystochrone with vA = 0
and vB =

√
2ghB, then the brachystochrone between points C and D with velocities

vC =
√

2ghC and vD =
√

2ghD is precisely the arc C–D. This is called the Principle of
Optimality.

2. A brachystochrone remains optimal after time reversal.

3. The brachystochrone helps make “strange” results in optimal control look more plau-
sible, see Figure 28 for a couple of possible examples.

6.5 Optimality Conditions

We can use calculus of variations to derive the optimal control. We seek a function of time
u(t) to minimize J subject to the state equations ẋ = f(x, u). Ordinary calculus can be used
to solve for a parameter to minimize a scalar. Calculus of variations is used to solve for a
function to minimize a scalar J . This is similar to the previous E–L equations, except that
here we need to satisfy the state equations as well. The approach is directly parallel to the
Lagrange multiplier method for parameter optimization subject to a constraint.

The final result is as follows: In order to solve

min J = K(x0, xf) +
∫ tf

t0
L(x, u) dt ,

such that ẋ = f(x, u) ,

we define the Hamiltonian

H(x, p, u) = pT f(x, u) − L(x, u) ,

where x is the state vector, and p is an unknown vector (called the co–state vector). The
necessary conditions for optimality are the following sets of equations:

1. The state equations,

ẋ =
∂H

∂p
= f(x, u) .

2. The adjoint equations,

ṗ = −∂H

∂x
.

3. Maximization of Hamiltonian,
∂H

∂u
= 0 ,

which is known as Pontryagin’s maximum principle.

4. Boundary conditions,

δK +
[
pT δx − Hδt

]tf
t0

= 0 .

7

Solution of these formidable equations yields the optimal control law u. This is a very difficult
task, and even when it is possible, usually the procedure yields an open loop control; i.e.,
u is obtained as a function of time rather than state. A special case where solution can be
obtained in closed loop form is the Linear Quadratic Regulator (LQR) problem.

6.6 The Linear Quadratic Regulator

Suppose we have a linear system,
ẋ = Ax + Bu ,

and a quadratic cost function,

J = 1
2
xT

f Fxf + 1
2

∫ tf

t0

[
xT Qx + uT Ru

]
dt ,

where x0, t0, tf are given (fixed) and xf is free to vary. This is the LQR problem: we seek a
control law u to minimize J . It should be emphasized that the above matrices A, B, Q, R
are assumed, in general, to be functions of time. This is our first attempt, so far, to design
a control law for a linear, time–varying system.

The weighting matrices F , Q, R are symmetric and positive definite and are at the
discretion of the designer. Q is the state weighting matrix, R penalizes the control effort,
and F penalizes the final state (or miss distance). Relatively small elements of Q compared
to R will result in a control law which will tolerate errors in x with low control effort u.
On the other hand, if Q is made large compared to R this will result in tight control; small
errors in the state with considerable control effort. We can also use different values of the
entries of Q (or R). For example, say the (2, 2) element of Q is large compared to the rest.
This will result in improved control of the state x2 at the expense of control accuracy of the
other states and more control effort.

In order to solve the LQR problem we apply the general equations of optimal control.
The Hamiltonian is

H(x, p, u) = pT (Ax + Bu) − 1
2
(xT Qx + uT Ru) ,

and the necessary conditions for optimality are

ẋ =
∂H

∂p
=⇒ ẋ = Ax + Bu ,

ṗ = −∂H

∂x
=⇒ ṗ = −AT p + Qx ,

∂H

∂u
= 0 =⇒ BT p − Ru = 0 =⇒ u = R−1BT p .

The boundary conditions are

[
pT δx − Hδt

]tf
t0

+ δ
(

1
2
xT

f Fxf

)
= 0 ,

8

or
pT (tf)δxf − pT (t0)δx0 − H(tf)δtf + H(t0)δt0 + xT

f Fδxf = 0 .

Since x0, t0, and tf are fixed we have

δx0 = δt0 = δtf = 0 ,

and the boundary condition becomes

pT (tf)δxf + xT
f Fδxf = 0 ⇒[

pT (tf) + xT
f F

]
δxf = 0 .

Since xf is free, its variation δxf is arbitrary. Therefore, the quantity inside the square
brackets must vanish, and this produces the desired boundary condition in the form

p(tf) = −Fx(tf) .

In summary, the problem we have to solve is

ẋ = Ax + BR−1BT p ,

ṗ = Qx − AT p ,

x(t0) = x0 ,

p(tf) = −Fx(tf) .

Solution of these ordinary differential equations will provide p(t) and this will allow calcula-
tion of u as a function of time from u = R−1BT p(t). However, solving these equations is not
as easy as it may seem. Notice that for a numerical integration of ẋ and ṗ we need to know
the initial conditions at t0; i.e., x(t0) and p(t0). But we know p(tf) = −Fx(tf) instead of
p(t0). This is called a two–point boundary value problem with half of the boundary condi-
tions at t0 and the other half at tf . Solution of two–point boundary value problems requires
iterative (shooting) techniques: assume an initial condition p(t0), integrate numerically the
system and at the end check whether the condition p(tf) = −Fx(tf) is satisfied, if it is not
change the initial condition p(t0) and iterate until convergence. To make things worse, even
if we could easily solve this problem, still the optimal control u would be open loop, u(t)
instead of u(x).

Kalman’s idea comes here to the rescue: Let

p(t) = −S(t)x(t) ,

where S(t) is a symmetric positive definite matrix to be determined. Then we have

ṗ = −Ṡx − Sẋ

= −Ṡx − S
(
Ax + BR−1BT p

)
,

or

Qx − AT p = −Ṡx − SAx − SBR−1BT p ⇒
Qx + AT Sx = −Ṡx − SAx + SBR−1BT Sx ⇒
−Ṡx =

(
AT S + SA − SBR−1BT S + Q

)
x ,

9

and since this must be true for all x we get

−Ṡ = AT S + SA − SBR−1BT S + Q ,

with
S(tf) = F .

This is called a Riccati matrix differential equation. Therefore, we can obtain S(t) by
backwards integration of the Riccati matrix differential equation, and then obtain the closed
loop optimal control law by

u = −R−1BT S(t)x ,

a linear state feedback with time varying gains.

For the case of constant A, B, Q, R matrices and tf → ∞, we have the steady state
problem Ṡ = 0. In this case the optimal closed loop control law is

u = −R−1BT Sx ,

where S is found by solving the algebraic Riccati equation (ARE) for the positive definite
S,

AT S + SA − SBR−1BT S + Q = 0 .

This is a nonlinear algebraic equation in the elements of S and it may admit multiple
solutions, only one of them is positive definite though, and this is the one that we seek. See
the lqr command for solution of the LQR problem using MATLAB.

Recall that previously we were using pole (eigenvalue) placement to produce arbitrary
closed–loop eigenvalues. Here we have a technique more suited for large, multivariable
systems in which we choose the weighting matrices Q and R. The mathematics then yields
a set of closed loop eigenvalues which are guaranteed to be stable (we will see why shortly)
but over which we have no direct control. If the closed loop eigenvalues are not acceptable,
it may be necessary to change the weighting matrices Q and R and iterate. If the errors
in the state xi are too large, it would be necessary to raise qii. If there is excessive use of
control uj, it would be necessary to raise rjj. This would cause the state or control with
the increased weighting in J to be reduced in the next design (iteration) at the expense of
increased errors in the other states and/or increased usage of the other controls.

How do we know that the LQR design yields a stable system though? We can show
stability by using Lyapunov’s method. Choose

V (x) = xT Sx ,

as a Lyapunov function candidate, where S is the positive definite solution of the Riccati
equation. Since S is a positive definite matrix, V (x) > 0. Its time derivative is

V̇ (x) = ẋSx + xT Ṡ + xT Sẋ

= (Ax + Bu)TSx + xT Ṡ + xT S(Ax + Bu)

= xT (Ṡ + AT S + SA − 2SBR−1BT S)x

= xT (−SBR−1BT S − Q)x

= −xT SBR−1BT Sx − xT Qx .

10

Let z = R−1BT Sx be some vector, then

V̇ (x) = −zT Rz − xT Qx < 0 ,

since Q, R are positive definite matrices. Therefore, V (x) is a Lyapunov function for the
LQR design, and since

V (x) > 0 and

V̇ (x) < 0 ,

the design will always yield a stable system (as long as the Riccati equation supplies the
positive definite solution matrix S).

As an example, say we have ẋ = 2x+u, a scalar system. The open loop pole is s− 2 = 0
or s = 2, so it is unstable. We wish to control x near zero and minimize

J =
∫ ∞

0
(qx2 + ru2) dt .

Suppose we want to use q = 0.25 and r = 1. Then the ARE is 2k+2k−k·1·1−1·1·k+0.25 = 0,
or k2 − 4k − 0.25 = 0. The positive root is k = 4.06 and the optimal control is

u = −1−1 · 1 · 4.06x = −4.06x .

The closed loop eigenvalue is det(2−4.06−s) = 0 or s = −2.06, and the closed loop response
is x(t) = x(t0)e

−2.06t. If we wish to reduce the error in x faster at the expense of using more
control we can raise q. If we redesign for q = 4, r = 1 we get k = 4.83, u = −4.83x, and
x(t) = x(t0)e

−2.83t. If we wish to reduce the amount of control used at the expense of slower
response, we can raise r. If we redesign for q = 0.25 and r = 10, we get k = 40.06, u = −4x,
and x(t) = x(t0)e

−2t.

Example: Consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ ,

ż = −Uθ + w .

One common logic in selecting the weighting matrices Q and R in the performance index J
is to say that we are willing to use control uj0 when state error xi0 is reached. We can make
Q and R diagonal with

qii =
1

x2
i0

, i = 1, 2, . . . , n (n states) ,

rjj =
1

u2
j0

, j = 1, 2, . . . , m (m controls) .

In our case the performance index is, in general,

J =
∫

(q11θ
2 + q22w

2 + q33q
2 + q44z

2 + rδ2) dt .

11

In this case we want to control θ and z near zero (their nominal values) and use a reasonable
amount of dive planes to do the job. We assume it would be reasonable to use 5o dive planes
for depth control when the pitch angle deviates 3o from zero or the boat reaches a depth
deviation of 1.5 feet (about one tenth of the length). We, therefore, assume all terms in Q
and R to be zero except,

q11 =
(

3

57.3

)−2

= 364.8 weighting on θ2 ,

q44 = (1.5)−2 = 0.444 weighting on z2 ,

r11 =
(

5

57.3

)−2

= 133.3 weighting on δ2 .

The performance index is

J =
∫ (

q11θ
2 + q44z

2 + r11δ
2
)

dt ,

and the control law then becomes

δ = −(−2.7570θ − 0.5457w − 2.7657q + 0.0577z) ,

and the closed loop poles are

−0.5207 ± 0.2841i and − 0.1197 ± 0.0704i .

A numerical simulation in terms of z and δ is shown in Figure 29 by the solid curves. If we
decide to use 5o dive planes for depth control when the pitch angle deviates 3o from zero or
the boat reaches a depth deviation 0.5 feet from zero, we expect a tighter control law: the
same dive plane angle is commanded for one third the error in z. In this case the control
law is

δ = −(−4.6187θ − 0.5177w − 4.5379q + 0.1732z) ,

and the closed loop poles are

−0.4901 ± 0.2819i and − 0.2267 ± 0.1111i .

The dominant pole is more negative in this case, as it should. The results of this simulation
are also shown in Figure 29 with the dotted curves, the response is faster at the expense of
more plane activity.

Other performance indices are also possible. Suppose the objective is to keep the subma-
rine at constant depth, z = 0, while minimizing the added drag due to dive plane activity.
The design is then for a depth controller which will minimize the added drag on the boat due
to its deviations from the equilibrium (nominal) level flight path x = [θ, w, q, z]T = [0, 0, 0, 0]T

and control δ = 0. To formulate the problem we need the longitudinal (surge) equation of
motion, which is (see ME 4823 for details)

(m − Xu̇)u̇ = Xqqq
2 + (Xwq − m)wq + Xwww2 + XUUU2 + Xδδδ

2 + Tprop ,

12

Figure 2: LQR simulation for a slow (solid) and a tight control (dotted) law

13

where XUU represents the drag coefficient in straight line motion, Tprop is the propulsive
force, and the terms Xqq, Xwq, Xww, Xδδ produce the added drag due to nonzero w, q, δ.
The control objectives here are:

depth control : minimize z2, deviation from desired ,

added drag : minimize −Fd ,

where
−Fd = −Xqqq

2 − (Xwq − m)wq − Xwww2 − Xδδδ
2 .

The weighting index is then

J =
∫

(q44z
2 − Fd) dt ,

or
J =

∫
(−Xqqq

2 − (Xwq − m)wq − Xwww2 − Xδδδ
2) dt .

Therefore, we can use

Q =




0 0 0 0
0 −Xww −1

2
(Xwq − m) 0

0 −1
2
(Xwq − m) −Xqq 0

0 0 0 q44


 ,

and
R =

[
−Xδδ

]
,

where q44 is the weighting factor between minimizing depth deviations and minimizing drag.
Relatively large values of q44 will penalize depth deviations heavily and will result in tight
control with increased plane activity (this may be required in operations at periscope depth,
for example). On the other hand, if q44 is chosen small, the resulting control law will
penalize control activity more resulting in minimizing drag and fuel efficiency, with larger
depth deviations from nominal.

6.7 Time Optimal Control of a Double Integral Plant

Consider the dynamical system,
Mẍ = F .

If we define,

x1 = x , x2 = ẋ , u =
F

M
,

we can write it in state space form as,

ẋ1 = x2 ,

ẋ2 = u .

We also assume the control constraints

|u| ≤ 1 ,

14

and the initial conditions,

x1(0) = x10 , x2(0) = x20 , x1(T) = x2(T) = 0 .

We want to minimize the time to fly,

min J =
∫ T

0
dt .

The Hamiltonian is

H(x, p, u, t) = pT f(x, u, t) − L(x, u, t) = p1x2 + p2u − 1 .

The necessary conditions for optimality are

ẋ1 =
∂H

∂p1
= x2 ,

ẋ2 =
∂H

∂p2

= u ,

ṗ1 = −∂H

∂x1
= 0 ,

ṗ2 = −∂H

∂x2
= −p1 .

Pontryagin’s maximum principle states that u must maximize H = p1x2+p2u−1. Therefore,
the optimal control needs to maximize p2u (since the rest of H does not depend on u). We
can see that if p2 is positive, u must get the maximum positive value (in this case +1), while
if p2 is negative, u must be −1. Therefore, the optimal control is given by

u = sgn[p2(t)] = +1 if p2 > 0 and −1 if p2 < 0 .

The optimal trajectory is given by the solution to,

ẋ − 1 = x2 ,

ẋ2 = sgn(p2) ,

ṗ1 = 0 ,

ṗ2 = −p1 ,

x1(0) = x10, x2(0) = x20, x1(T) = 0, x2(T) = 0 .

This is a reduced system of equations, since u is eliminated by maximizing H .

To solve this system we observe that since ṗ1 = 0 we have that p1 = const. and this means
that p2 is a first–order polynomial in t. Therefore, it can only go from positive to negative
at most once in its life, which means that there are only four possible control sequences,

{+1} , {−1} , {+1,−1} , {−1, +1} .

15

u = + 1u = - 1

x 1

x 2

A

B

x 2

x 1

u = - 1

u = - 1

u = + 1
u = + 1

z < 0

z > 0

switching
line

Figure 3: Time optimal control of a double integrator plant

16

Figure 4: Time optimal control of a double integrator plant: Feedback implementation

If we let U = ±1 be the control, we have

x1 = x10 + x20t +
1

2
Ut2 ,

x2 = x20 + Ut .

If we eliminate t we can get

x1 −
(
x10 − 1

2
Ux2

20

)
=

1

2
Ux2

2 ,

which represents a family of parabolas as shown in Figure 30. If u = +1 we are located on
branch A while if u = −1 we are on branch B. The branch that goes through the origin is
called the switching line and it is given by

x1 = −1

2
x2|x2| .

To see how this optimal control works, suppose we start from an initial condition with both
x1 and x2 positive. We apply control u = −1 until we hit the switching line, there we switch
to u = +1 and we land at the origin with zero velocity.

A feedback control implementation is shown in Figure 31. We define

z = x1 +
1

2
x2|x2| ,

which means that the switching line is z = 0. Therefore, we get the optimal control through
a switch u = −1 when z > 0 and u = +1 when z < 0. We should point out that in this
case the final portion of the state trajectory follows the switching curve, this is not typical

17

for all systems though. Since the optimal control switches from positive to negative we call
it bang–bang control. Most minimum time control problems lead to bang–bang controllers.
Pontryagin has shown that for a system of order n with negative real poles and scalar u,
|u| ≤ 1, the optimal control switches at most n − 1 times.

18

